Ubiquitin Carboxy-Terminal Hydrolase-L1 as a Serum Neurotrauma Biomarker for Exposure to Occupational Low-Level Blast
نویسندگان
چکیده
Repeated exposure to low-level blast is a characteristic of a few select occupations and there is concern that such occupational exposures present risk for traumatic brain injury. These occupations include specialized military and law enforcement units that employ controlled detonation of explosive charges for the purpose of tactical entry into secured structures. The concern for negative effects from blast exposure is based on rates of operator self-reported headache, sleep disturbance, working memory impairment, and other concussion-like symptoms. A challenge in research on this topic has been the need for improved assessment tools to empirically evaluate the risk associated with repeated exposure to blast overpressure levels commonly considered to be too low in magnitude to cause acute injury. Evaluation of serum-based neurotrauma biomarkers provides an objective measure that is logistically feasible for use in field training environments. Among candidate biomarkers, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) has some empirical support and was evaluated in this study. We used daily blood draws to examine acute change in UCH-L1 among 108 healthy military personnel who were exposed to repeated low-level blast across a 2-week period. These research volunteers also wore pressure sensors to record blast exposures, wrist actigraphs to monitor sleep patterns, and completed daily behavioral assessments of symptomology, postural stability, and neurocognitive function. UCH-L1 levels were elevated as a function of participating in the 2-week training with explosives, but the correlation of UCH-L1 elevation and blast magnitude was weak and inconsistent. Also, UCH-L1 elevations did not correlate with deficits in behavioral measures. These results provide some support for including UCH-L1 as a measure of central nervous system effects from exposure to low-level blast. However, the weak relation observed suggests that additional indicators of blast effect are needed.
منابع مشابه
Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron.
Mammalian neuronal cells abundantly express a deubiquitylating enzyme, ubiquitin carboxy-terminal hydrolase 1 (UCH L1). Mutations in UCH L1 are linked to Parkinson's disease as well as gracile axonal dystrophy (gad) in mice. In contrast to the UCH L3 isozyme that is universally expressed in all tissues, UCH L1 is expressed exclusively in neurons and testis/ovary. We found that UCH L1 associates...
متن کاملSerum UCH-L1 as a Novel Biomarker to Predict Neuronal Apoptosis Following Deep Hypothermic Circulatory Arrest
BACKGROUND Deep hypothermic circulatory arrest (DHCA) has been used in cardiac surgery involving infant complex congenital heart disease and aortic dissection. DHCA carries a risk of neuronal apoptotic death in brain. Serum ubiquitin C-terminal hydrolase L1 (UCH-L1) level is elevated in a number of neurological diseases involving neuron injury and death. We studied the hypothesis that UCH-L1 ma...
متن کاملNeuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study
INTRODUCTION Authors of several studies have studied biomarkers and computed tomography (CT) findings in the acute phase after severe traumatic brain injury (TBI). However, the correlation between structural damage as assessed by neuroimaging and biomarkers has not been elucidated. The aim of this study was to investigate the relationships among neuronal (Ubiquitin carboxy-terminal hydrolase L1...
متن کاملUbiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats.
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), also called neuronal-specific protein gene product 9.5, is a highly abundant protein in the neuronal cell body and has been identified as a possible biomarker on the basis of a recent proteomic study. In this study, we examined whether UCH-L1 was significantly elevated in cerebrospinal fluid (CSF) following controlled cortical impact (CCI) and middle ...
متن کاملBackbone and side-chain 1H, 15N and 13C resonance assignments of S18Y mutant of ubiquitin carboxy-terminal hydrolase L1
Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also known as PGP9.5, is a protein of 223 amino acids. Although it was originally characterized as a deubiquitinating enzyme, recent studies indicate that it also functions as a ubiquitin (Ub) ligase and a mono-Ub stabilizer. It is highly abundant in brain, constituting up to 2% of total brain proteins. Down-regulation and extensive oxidative mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015